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Abstract
Objective  This study assessed whether apolipoprotein 
CIII-lipoprotein(a) complexes (ApoCIII-Lp(a)) associate 
with progression of calcific aortic valve stenosis (AS).
Methods  Immunostaining for ApoC-III was performed 
in explanted aortic valve leaflets in 68 patients with 
leaflet pathological grades of 1–4. Assays measuring 
circulating levels of ApoCIII-Lp(a) complexes were 
measured in 218 patients with mild–moderate AS from 
the AS Progression Observation: Measuring Effects of 
Rosuvastatin (ASTRONOMER) trial. The progression rate 
of AS, measured as annualised changes in peak aortic 
jet velocity (Vpeak), and combined rates of aortic valve 
replacement (AVR) and cardiac death were determined. 
For further confirmation of the assay data, a proteomic 
analysis of purified Lp(a) was performed to confirm the 
presence of apoC-III on Lp(a).
Results  Immunohistochemically detected ApoC-III was 
prominent in all grades of leaflet lesion severity. Significant 
interactions were present between ApoCIII-Lp(a) and 
Lp(a), oxidised phospholipids on apolipoprotein B-100 
(OxPL-apoB) or on apolipoprotein (a) (OxPL-apo(a)) 
with annualised Vpeak (all p<0.05). After multivariable 
adjustment, patients in the top tertile of both apoCIII-
Lp(a) and Lp(a) had significantly higher annualised Vpeak 
(p<0.001) and risk of AVR/cardiac death (p=0.03). Similar 
results were noted with OxPL-apoB and OxPL-apo(a). There 
was no association between autotaxin (ATX) on ApoB 
and ATX on Lp(a) with faster progression of AS. Proteomic 
analysis of purified Lp(a) showed that apoC-III was 
prominently present on Lp(a).
Conclusion  ApoC-III is present on Lp(a) and in aortic 
valve leaflets. Elevated levels of ApoCIII-Lp(a) complexes in 
conjunction with Lp(a), OxPL-apoB or OxPL-apo(a) identify 
patients with pre-existing mild–moderate AS who display 
rapid progression of AS and higher rates of AVR/cardiac 
death.
Trial registration  NCT00800800.

Introduction
Calcific aortic valve stenosis (AS) is associated with 
significant morbidity and mortality.1 Due to lack of 
therapies that slow progression of pre-existing AS, 
conventional surgical or transcatheter aortic valve 
replacement (AVR) is the only therapy currently avail-
able. However, in many patients, AVR is used late in 

life when comorbidities are common, and prognosis 
can be poor despite surgery.2

The prevalence of AS is growing, with an esti-
mated 4.5 million cases of clinically significant AS 
estimated by 2030.3 Certain risk factors for AS 
have been recognised for many years, including age, 
hypertension, metabolic syndrome and elevated low-
density lipoprotein cholesterol (LDL-C).4 However, 
four randomised trials of statin therapy in patients 
with modest elevations of LDL-C have not shown 
any difference in AS progression rates or the need for 
AVR, suggesting that other aetiologic factors are more 
causally involved.5 Genetic studies have shown that 
single nucleotide polymorphisms in the LPA gene are 
associated with elevated lipoprotein(a) [Lp(a)] levels 
and aortic valve calcification and AS.6–8 It has also 
been shown that oxidised phospholipids (OxPL) asso-
ciated with apolipoprotein B-100 (apoB) and Lp(a) 
are associated with AS, potentially as causal mediators 
with a linear relationship of OxPL-apoB levels with 
echocardiographically determined progression and 
need for AVR.9–11 Furthermore, autotaxin (ATX) mass 
and activity, which generate pro-calcifying lysophos-
phatidic acid from breakdown products of OxPL are 
also associated with AS and evidence suggest that ATX 
is transported by Lp(a).10 12 13 Metabolic syndrome, 
which includes elevated triglycerides, is also associ-
ated with AS.14 Elevated levels of apolipoprotein C-III 
(ApoC-III) are associated with elevated triglyceride 
levels and remnant cholesterol15 and are also associ-
ated with higher risk of cardiovascular disease.16–18

Clinical and biochemical measures that predict 
the progression of established AS are suboptimal. 
We have developed novel assays to integrate various 
lipoproteins in the pathophysiological relationships 
in AS and have applied them to the AS Progression 
Observation: Measuring Effects of Rosuvastatin 
(ASTRONOMER) trial. Specifically, we have devel-
oped assays to measure complexes of ApoC-III on 
Lp(a) [ApoCIII-Lp(a)]19 and assessed their role in 
progression of AS and need for AVR. Additionally, 
we have developed high-throughput ELISAs to 
measure ATX mass on Lp(a) [ATX-Lp(a)] and apoli-
poprotein B-100 [ATX-apoB].10

Methods
Patient population
The design and main results of the ASTRONOMER 
trial have been previously reported20 and detailed 
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Figure 1  Representative immunohistological staining for ApoC-III 
according to pathological grading of explanted aortic valve leaflets. Part 
A shows aortic valve leaflet sections stained for apolipoprotein C-III 
(apoC-III). In all panels, the aortic side of the valve is to the top. Note 
the presence of ApoC-III in all pathological grades, and the increase in 
the staining with the increase in the pathological severity of the lesion. 
Part B shows higher magnification of representative immunohistological 
staining for ApoC-III according to pathological grade 1 explanted aortic 
valve leaflets. Individual selected areas from the top panel in part A 
stained for apolipoprotein C-III (apoC-III) at higher magnification with 
visibility of cell nuclei.

description of the inclusion and exclusion criteria is presented 
in the online supplementary material. The study protocol was 
approved by the institutional review boards at all participating 
centres and patients gave written signed informed consent. Of 
the 269 patients enrolled in ASTRONOMER, 218 had remaining 
blood samples for the current analysis.

Study outcomes
The primary outcome for this study was the progression rate of 
AS measured as annualised changes in peak aortic jet velocity 
(Vpeak). To account for different follow-up lengths, annualised 
Vpeak was calculated by dividing the difference between last 
follow-up and baseline values by the length of follow-up. The 
secondary outcome was the composite of AVR or cardiac death. 
Finally, based on explanted valves from surgery, the presence of 
ApoC-III and its co-localisation of Lp(a) and OxPL were tested.

Clinical, laboratory and Doppler echocardiographic data
Clinical, laboratory and Doppler echocardiographic data for the 
ASTRONOMER trial are previously described (online supple-
mentary material).20

Aortic valve morphology and function were assessed by 
Doppler echocardiography and the primary echocardiographic 
parameter to assess AS severity was peak aortic jet velocity (Vpeak) 
(online supplementary material).9 14

Quantification of circulating biomarkers and immunostaining 
related to ApoC-III and ATX
Detailed methodology related to the antibodies used and 
the assays performed to quantify circulating biomarkers are 
presented in the online supplementary material.

Assay methodology in cartoon format for ApoCIII-Lp(a), 
-ATX-Lp(a) and ATX-ApoB is shown in online supplementary 
figure 1 and results are reported as relative light units (RLU) in 
100 ms.

Proteomic analysis of purified Lp(a)
Lp(a) was purified from the lipid apheresis eluate of three 
distinct subjects undergoing LDL apheresis. Detailed method-
ology related to the Lp(a) proteomic analysis and LC-MS/MS 
method used is presented in the online supplementary material.

Histological and immunohistochemical analysis of valve 
leaflets following surgical AVR
Detailed methodology of the analysis of the 68 patients recruited 
at the Robert-Bosch-Hospital (Stuttgart, Germany) is presented 
in the online supplementary material.

Statistical analysis
Continuous data were expressed as mean±SD and were tested 
for normality of distribution and homogeneity of variances with 
the Shapiro–Wilk and Levene tests, respectively. Plasma levels 
of total ApoC-III, ApoCIII-Lp(a), ATX-apoB and ATX-Lp(a), 
Lp(a), OxPL-apoB and OxPL-apo(a) were reported as median 
(IQR). Categorical variables were expressed as percentages. The 
Spearman’s rank correlations were used to determine the asso-
ciation between total ApoCIII, ApoCIII-Lp(a), ATX-apoB and 
ATX-Lp(a) with (i) the standard lipid biomarkers (ie, LDL-C, 
corrected LDL-C for Lp(a) cholesterol content, ApoB, HDL-C 
and TG); (ii) the glycaemic biomarkers (ie, fasting glucose, insulin 
and HOMA-IR) and (iii) Lp(a), OxPL-apoB and OxPL-apo(a).

For the analysis of the primary outcome (annualised Vpeak), 
progression rate of AS was compared across the top tertile and the 

two bottom tertiles for total ApoC-III (>10.6 mg/dL vs ≤10.6 
mg/dL), ApoCIII-Lp(a) (>2 97 000 RLU vs ≤2 97 000 RLU), 
ATX-apoB (>5600 RLU vs ≤5600 RLU) and ATX-Lp(a) (>5900 
RLU vs ≤5900 RLU) using unpaired Student’s t-test or Mann–
Whitney U test, as appropriate. Univariable and multivariable 
linear regression analyses were performed to assess the indepen-
dent association between baseline total ApoC-III, ApoCIII-Lp(a), 
ATX-apoB and ATX-Lp(a) plasma levels (ie, defined as top tertile 
vs middle and bottom tertiles) and (i) baseline AS severity and 
(ii) AS progression defined as annualised Vpeak. The multivari-
able models were built according to our previous analysis and 
included the following variables: (1) variables with p value<0.10 
in individual analysis, (2) traditional cardiovascular risk factors, 
(3) aortic valve phenotype (bicuspid vs tricuspid) and (4) rando-
misation status (statin vs placebo).9 14 Results were reported as 
standardised βeta coefficient ±SE (βeta±SE). Univariable and 
multivariable logistic regression models were performed to iden-
tify the risk of being rapid progressor defined as an annualised 
progression rate of Vpeak≥0.20 m/s/yr as previously described.9 
Results were reported as ORs with 95% CIs.

Interactions with regard to progression rate of AS between 
total ApoC-III, ApoCIII-Lp(a), ATX-apoB and ATX-Lp(a) levels, 
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Table 1  Baseline characteristics of patients in the AS Progression 
Observation: Measuring Effects of Rosuvastatin trial

Variables All patients n=218

Clinical

 � Age, years 58±13

 � Male gender, % 60%

 � Height, cm 169±10

 � Weight, kg 81±17

 � Body surface area, m2 1.91±0.21

 � Body mass index, kg/m2 28±6

 � Waist circumference, cm 95±14

 � Metabolic syndrome, % 27%

 � History of hypertension, % 32%

 � Systolic blood pressure, mm Hg 127±16

 � Diastolic blood pressure, mm Hg 75±10

 � History of smoking, % 49%

Medication

 � Anti-hypertensive treatment, % 18%

 � ACE inhibitors, % 11%

 � ARBs, % 7%

 � Rosuvastatin, % 51%

Laboratory data

 � LDL-C, mg/dL 126±27

 � Corrected LDL-C, mg/dL* 116±27

 � ApoB, mg/dL 102±19

 � HDL-C, mg/dL 58±17

 � Triglycerides, mg/dL 120±61

 � Fasting glucose, mg/dL 95±11

 � Creatinine, mg/dL 0.91±0.19

 � Lp(a), mg/dL 29.9 [12.6–76.3)

 � OxPL-apoB, nM 3.54 [2.27–8.67)

 � OxPL-apo(a), nM 15.9 [4.46–53.4)

 � ATX-apoB, RLU 4669 [3625–5910)

 � ATX-Lp(a), RLU 3679 [2268–8338)

 � Total ApoCIII, mg/dL 8.79 [6.33–11.47)

 � ApoCIII-Lp(a), RLU 2 30 653 [1 75 031–3 34 8)

Doppler echocardiographic data

 � Bicuspid aortic valve, % 48%

 � Aortic valve calcification score 1.7±0.7

 � Peak aortic jet velocity, m/s 3.2±0.4

 � Peak transvalvular gradient, mm Hg 41±11

 � Mean transvalvular gradient, mm Hg 22±7

 � Aortic valve area, cm2 1.34±0.42

 � Indexed aortic valve area, cm2/m2 0.70±0.21

 � Valvulo-arterial impedance, mm Hg/mL.m2.04 4.9±1.4

 � Relative wall thickness ratio 0.44±0.09

 � LV mass index, g/m2.7 48±15

 � LV ejection fraction, % 66±7

Values are mean ±SD or median (IQR).
*LDL-C was corrected for the cholesterol content in Lp(a) using the following 
formula: corrected LDL-C=LDL C – Lp(a) mass in mg/dL×0.3.
ACE, angiotensine-converting enzyme; apo(a), apolipoprotein (a); apoB, 
apolipoprotein B; apoCIII, apolipoprotein CIII; ARBs, angiotensin receptor blockers; 
ATX, autotaxin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; Lp(a), lipoprotein(a); LV, left ventricle; OxPL, oxidised 
phospholipids; RLU, relative light units.

Table 2  P values of the interaction between ApoCIII and autotaxin 
biomarkers vs Lp(a), OxPL-apoB, OxPL-apo(a) for annualised 
progression rate of as (Vpeak)

Total ApoC-III ApoCIII-Lp(a) ATX-ApoB ATX-Lp(a)

Lp(a) 0.19 0.01 0.06 0.68

OxPL-apoB 0.13 0.01 0.03 0.97

OxPL-apo(a) 0.24 0.02 0.05 0.93

apo(a), apolipoprotein (a); apoB, apolipoprotein B; apoCIII, apolipoprotein CIII; AS, 
aortic stenosis; ATX, autotaxin; Lp(a), lipoprotein(a); OxPL, oxidised phospholipids; 
Vpeak, peak aortic jet velocity.

with biomarkers we had previously identified as predictors of 
rapid progression of AS (ie, Lp(a), OxPL-apoB and OxPL-apo(a) 
levels),9 were determined using linear regression models. Two-
way analysis of variance followed by Tukey’s post-hoc test was 

then performed to compare annualised Vpeak across groups. The 
independent predictive value of the combined ‘top tertile of 
ApoCIII-Lp(a)-top tertile of Lp(a)’ and ‘top tertile of ApoCIII-
Lp(a)-top tertile of OxPL-apoB’ groups was assessed using 
multivariable linear and logistic regression analyses, as described 
above.

For the analysis of the secondary outcome (composite of 
AVR or cardiac death; n=48), univariable and multivariable 
Cox proportional hazard models were performed to assess the 
association between ‘top tertile of ApoCIII-Lp(a)-top tertile of 
Lp(a)’ group and AS-related events. The proportional hazards 
assumption was checked with the use of Schoenfeld residuals. 
Models were adjusted for age, gender and baseline AS severity, 
and results were reported as HRs with 95% CI. A p value<0.05 
was considered statistically significant.

Results
Histological and immunohistochemical findings from 
surgically explanted aortic valve leaflets
As previously reported, the 68 aortic valves were patholog-
ically classified as grades 1–4.10 ApoC-III was detectable in 
every lesion examined, from grades 1 to 4, at low (figure 1A) 
and high (figure  1B) magnification. A more abundant deposi-
tion of apoC-III was observed with the increase in pathological 
grades, especially in grades 3–4 (figure 1A). ApoC-III co-local-
ised with apo(a) staining through all degree of lesions severity, 
as well as with OxPL epitopes in the more severe pathological 
valve (online supplementary figure 2). Negative control stains 
with both normal rabbit serum and irrelevant isotype-matched 
antibodies were negative (online supplementary figure 3).

Population characteristics of the ASTRONOMER trial and 
lipids biomarkers
Baseline clinical, laboratory and Doppler echocardiographic 
characteristics of the entire population in ASTRONOMER are 
presented in table 1.

There were modest but significant correlations between plasma 
levels of ApoCIII-Lp(a) and all the standard lipid biomarkers (ie, 
LDL, LDL-corr, apoB, HDL, TG), as well as with insulin and 
HOMA-IR, the strongest being between ApoCIII-Lp(a) and TG 
(rs=0.48, p≤0.005; online supplementary table 1). The plasma 
level of total ApoC-III was also significantly correlated with lipid 
biomarkers, except for HDL-C. ATX-apoB presented a negative 
correlation with Lp(a) (rs=−0.15; p=0.02). Negative correla-
tions were also observed between ATX-Lp(a) and glycaemic 
biomarkers (ie, fasting glucose, insulin and HOMA-IR) but all 
the other correlations tested were not significant. Total ApoC-III 
and ApoCIII-Lp(a) were also significantly correlated with ATX-
apoB (rs=0.33 and rs=0.34, respectively, p<0.001; online 
supplementary table 1).
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Figure 2  AS progression rate according to top tertiles of ApoCIII-
Lp(a) and Lp(a) or OxPL-apoB. Comparison of annualised Vpeak after 
dichotomisation by middle and bottom tertiles versus top tertile of 
ApoCIII-Lp(a) (ie, apoCIII-Lp(a)≤ vs >297,000 RLU) and tertile of Lp(a) 
(ie, interaction between tertiles of ApoCIII-Lp(a) and Lp(a); (A) or 
tertile of OxPL-apoB (ie, interaction between tertiles of ApoCIII-Lp(a) 
and OxPL-apoB; (B). ApoCIII, apolipoprotein C-III; Lp(a), lipoprotein(a); 
Vpeak, peak aortic jet velocity. P values are from two-way ANOVA. 
*p<0.05 compared with the other three groups (from Tukey’s post hoc 
test). The box shows 25th and 75th percentiles, the median line shows 
the median value and the black dot the mean value, error bars the 10th 
and 90th percentiles; circles are outliers. The numbers at the bottom of 
the graph are mean±SEM of the progression rate of Vpeak and between 
brackets the number of patients in each group. ApoCIII, apolipoprotein 
CIII; apoB, apolipoprotein B; ANOVA, analysis of variance; AS, aortic 
valve stenosis; Lp(a), Lipoprotein(a); OxPL, oxidised phospholipids; RLU, 
relative light units.

Figure 3  Risk of rapid AS progression according to top tertiles of 
ApoCIII-Lp(a) and Lp(a) or OxPL-apoB. Univariable and multivariable 
ORs for the risk of being a rapid progressor (ie, annualised Vpeak>0.20 
m/s/yr) in the four groups of patients defined according to middle and 
bottom tertiles versus top tertile of ApoCIII-Lp(a) and Lp(a) (A) or OxPL-
apoB (B). ф Multivariable adjustment for age, gender, hypertension, 
metabolic syndrome, statin use, corrected LDL-C, creatinine, bicuspid 
aortic valve phenotype, aortic valve calcification score and baseline peak 
aortic jet velocity. ApoCIII, apolipoprotein CIII; apoB, apolipoprotein 
B; AS, aortic valve stenosis; Lp(a), Lipoprotein(a); OxPL, oxidised 
phospholipids.

There was no significant association between total ApoC-III, 
ApoCIII-Lp(a), ATX-apoB and ATX-Lp(a) and baseline Vpeak, 
mean gradient (MG) or aortic valve area (AVA) (all p>0.20). 
There was no effect of statin therapy during the first-year post 
randomisation on ApoC-III or ATX biomarkers (all p>0.16).

AS progression rate and total ApoC-III, ApoCIII-Lp(a), ATX-
ApoB and ATX-Lp(a) biomarkers
The median echocardiographic follow-up was 3.5 (2.9–4.5) 
years. There was no difference in annualised Vpeak between 
top tertile versus middle and bottom tertiles of total ApoC-III 
(0.23±0.26 versus 0.19±0.22, p=0.27; online supplementary 
figure 4A) and of ApoCIII-Lp(a) (0.22±0.28 vs 0.19±0.21, 
p=0.47, online supplementary figure 4B), as well as top tertile 
versus middle and bottom tertile of ATX-apoB or ATX-Lp(a) (all 
p>0.80). After comprehensive multivariable adjustment, results 
were consistent (all p>0.20; online supplementary table 2). 

Similar results were observed with the analysis looking at the 
risk of being rapid progressors (all p>0.15; online supplemen-
tary table 2). There was no impact of statin treatment for all 
biomarkers (all p>=0.29).

Interaction between total ApoC-III, ApoCIII-Lp(a), ATX-apoB 
and ATX-Lp(a) biomarkers and Lp(a), OxPL-apoB or OxPL-
apo(a) with AS progression rate
There were significant interactions between ApoCIII-Lp(a) and 
Lp(a) (p=0.01), OxPL-apoB (p=0.01) or OxPL-apo(a) (p=0.02) 
with regards to AS progression rate (table 2). Interactions were 
borderline significant for ATX-apoB (p≤0.06), and not signifi-
cant with total ApoC-III and ATX-Lp(a) (p≥0.13; table 2).

The annualised Vpeak was twofold faster in the combined group 
of top tertile of ApoCIII-Lp(a) and top tertile of Lp(a) (ie, ‘tertile 
3 of ApoCIII-Lp(a)-tertile 3 of Lp(a)’ group; n=22) as opposed 
to the other groups (figure 2A). After comprehensive multivari-
able adjustment, ‘tertile 3 of ApoCIII-Lp(a)-tertile 3 of Lp(a)’ 
was the only group which remained significantly associated 
with annualised Vpeak (βeta coeff.: 0.28±0.07, p=0.001). The 
interaction between ApoCIII-Lp(a) and OxPL-apoB (figure 2B) 
or OxPL-apo(a) showed similar results. In multivariable anal-
ysis, the combined group of top tertile of ApoCIII-Lp(a) and 
top tertile of OxPL-apoB (βeta coeff.: 0.29±0.07, p=0.001) 
was associated with higher annualised Vpeak. Similar results were 
observed for OxPL-apo(a) (p≤0.02; data not shown).

There was no significant interaction between ApoC-III or 
ATX biomarkers and age, bicuspid aortic valve phenotype or the 
presence of metabolic syndrome with regard to AS progression 
rate (all p>0.05).

All these results were confirmed by the analysis of the risk 
of being a rapid progressor, defined as an annualised Vpeak≥0.20 
m/s/yr (detailed numbers of rapid progressor in each studied 
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Figure 4  Risk of aortic valve-related events according to top tertiles 
of ApoCIII-Lp(a) and Lp(a). Univariable and multivariable Hazard Ratios 
for the composite of AVR or cardiac death in the four groups of patients 
defined according to middle and bottom tertiles versus top tertile of 
ApoCIII-Lp(a) and Lp(a). § Multivariable adjustment for age, gender and 
baseline peak aortic jet velocity. ApoCIII, apolipoprotein CIII; AVR, aortic 
valve replacement; Lp(a), lipoprotein(a).

Table 3  LC-MS/MS analysis of Lp(a) unambiguously identified ApoC-
III

Lp(a) apolipoprotein composition

Total ion intensity (%) PSM/Mw (%)

LPA 22.87 2.48

APOAI 0.94 5.31

APOAII 0.80 7.04

APOAIV 0.03 1.87

APOB 60.10 16.07

APOCI 0.74 11.92

APOCII 0.85 5.74

APOCIII 3.62 20.44

APOCIV 0.08 3.04

APOD 0.34 4.89

APOE 6.21 15.22

APOL1 0.03 1.18

APOM 0.24 3.72

CLU 0.13 1.38

LC-MS/MS analysis of Lp(a) from three distinct patients unambiguously identified 
Apo-CIII. Spectra for Apo-CIII accounted for 3.62% of the total ion intensity of 
apolipoproteinsin the LC-MS/MS analysis of Lp(a). Given the small size of apoC-III, 
the peptide spectral matches presented in online supplementary table 3 were also 
adjusted for molecular weight of the protein.

group are presented in the online supplementary table 3). The 
‘tertile 3 of ApoCIII-Lp(a)-tertile 3 of Lp(a)’ was the only group 
associated with a higher risk of rapid AS progression in univari-
able and multivariable analyses (OR=3.3, 95% CI: 1.2 to 9.0, 
p=0.02; and OR=4.1, 95% CI: 1.3 to 12.9, p=0.02; respec-
tively) (figure 3A). Similarly, ‘tertile 3 of ApoCIII-Lp(a)-tertile 
3 of OxPL-apoB’ provided consistent results in univariable and 
multivariable analyses (OR=3.2, 95% CI: 1.2 to 8.6, p=0.02; 
and OR=4.1, 95% CI: 1.3 to 12.9, p=0.02; respectively; 
figure 3B). Similar results were obtained for OxPL-apo(a) (data 
not shown).

Relationship of ApoCIII-Lp(a) with AS-related clinical events
During follow-up, 48 AS-related events occurred, including 46 
AVR and two cardiac deaths (detailed numbers of events in each 
studied group are presented in online supplementary table 3). 
After adjustment for age, gender and baseline AS severity, ‘tertile 
3 of ApoCIII-Lp(a)-tertile 3 of Lp(a)’ group was the only one 
associated with a higher risk of clinical events (HR=2.56, 95% 
CI 1.12 to 5.86, p=0.03; figure 4).

Lp(a) Proteome
LC-MS/MS analysis of isolated, purified Lp(a) coming from three 
distinct patients showed that apoC-III accounted for 3.62% of 
the total ion intensity of all apolipoproteins. When the total ion 
intensity was adjusted for the molecular weight of the protein, 
the proportion of apoC-III on Lp(a) was 20.44% (table 3), the 
highest of all lipoproteins, suggesting multiple copies of apoC-III 
are present on Lp(a). A variety of other apolipoproteins are also 
present, including apoE, apoC-I, apoAII and apoC-II. A list of 
the most readily detected proteins is shown in online supple-
mentary table 4.

Discussion
The current study demonstrates that ApoC-III is a prominent 
component of Lp(a) and has strong immunological presence 
in aortic valve leaflets and co-localises with Lp(a) and OxPL. 
Furthermore, the study expands our knowledge on the determi-
nants of rapid progression of mild–moderate AS by showing that 
apoCIII-Lp(a) complexes in conjunction with either Lp(a) or 
OxPL-apoB and OxPL-apo(a) identify rapid progressors echo-
cardiographically and patients at highest risk for AVR. This study 
advances our ability to predict the progression of pre-existing 
mild-moderate AS by combining lipid, metabolic and inflamma-
tory components into a biomarker construct. These findings may 
prove its usefulness in interpreting future studies of AS.

It is known that ApoC-III circulates on all lipoproteins, 
including Lp(a).19 21 However, unlike apoB on LDL or apo(a) 
on Lp(a) where there is a 1:1 relationship, multiple particles 
of ApoC-III may be carried by various lipoproteins.22 Interest-
ingly, in the current study and in a prior study where methods 
to measure ApoCIII-Lp(a) complexes were first described,19 
there was no correlation of ApoCIII-Lp(a) and Lp(a) levels. This 
suggests that only a subset of Lp(a) particles carry apoC-III, and 
if these patients concomitantly have elevated Lp(a), OxPL-apoB 
or OxPL-apo(a), they are at high risk of AS progression.

The patients in the ASTRONOMER trial had mild–moderate 
AS at enrolment, with baseline mean peak aortic jet velocity 
of 3.2 m/s and valve area 1.34 cm2. In a prior analysis from 
ASTRONOMER, subjects in the highest tertile of Lp(a), OxPL-
apoB or OxPL-apo(a), had AS progression rates of 0.26 m/s/yr.9 
In the current study, subjects in the highest tertile of apoCIII-
Lp(a) and Lp(a) or OxPL-apoB had rates of progression of 0.37 
m/s/yr, the highest progression rate seen with any variable previ-
ously studied in ASTRONOMER, including age, hypertension, 
elevated LDL-C, body mass index and metabolic syndrome 
(summary figure 5).14

Prior studies in ASTRONOMER showed that metabolic 
syndrome was associated with faster stenosis progression and 
poorer prognosis and that it was significant only in patients<57 
years of age.14 The current findings are also consistent with the 
relationship of Lp(a), OxPL-apoB and OxPL-apo(a), which are 
primarily genetic risk factors23 and are also more prominent 
predictors in similarly younger patients.9 It was previously 
shown that apoB and apoE are present in aortic valve leaflets,24 
and the full proteome of aortic valve leaflets is slowly being 
defined.25 ApoC-III is carried by all apoB and apoE-containing 
lipoproteins, so it follows that these lipoproteins are all present 
in Lp(a) particles as well as in aortic valve leaflets.21

ATX-apoB and ATX-Lp(a) were not predictors of progression 
of AS. In prior studies, ATX activity was elevated by 60% in 
mineralised aortic valves in comparison with control valves.12 
Immunohistochemistry studies showed a high level of ATX in 
mineralised aortic valves, which co-localised with OxPL and 
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Key questions

What is already known about this subject?
►► Oxidised phospholipids (OxPL) sassociated with 
apolipoprotein B-100 (OxPL-apoB) and lipoprotein(a) [Lp(a)] 
are associated with haemodynamic progression rate of 
calcific aortic valve stenosis (AS) and occurrence of valve-
related events, mainly defined as the need of aortic valve 
replacement. Other factors, such as metabolic syndrome in 
which triglycerides are elevated, are also associated with AS. 
Currently, biomarkers in the context of AS remain suboptimal 
to predict rapid progression and risk of events.

What does this study add?
►► This study shows that apolipoprotein C-III (apoC-III), which is 
an important component of Lp(a), is present within diseased 
aortic valve leaflets. Furthermore, circulating levels of ApoC-III 
on Lp(a) complexes, associated with elevated Lp(a) or OxPL 
plasma levels, identify rapid progressors and patients with 
high risk of aortic valve-related events. This study supports 
the usefulness of these biomarkers to predict progression of 
AS and stratify risk of patients.

How might this impact on clinical practice?
►► Identifying patients at higher risk of events or those who 
are prone to progress rapidly from mild-moderate to severe 
AS can be useful to manage and follow patients with AS. 
Moreover, this study provides further support to target Lp(a)/
OxPL/apoC-III pathway to delay the progression of the 
disease using antisense oligonucleotides targeted to Lp(a) or 
ApoC-III, or monoclonal antibodies to OxPL.

Figure 5  Comparison of annualised Vpeak (m/s/yr) and Hazard Ratios 
for the risk of clinical events for various risk factors. : progression rates 
of Vpeak (A) and HRs for risk of clinical events defined as AVR or cardiac 
death (B, where HRs are adjusted for age, sex and baseline as severity) 
in 218 patients from the ASTRONOMER trial. Data are presented for the 
subset of older patients (ie, age ≥median age; n=110), obese patients 
(ie, body mass index ≥30 kg/m²; n=64), patients with hypertension 
(n=70), higher LDL-C (ie, LDL-C >median LDL-C; 109), metabolic 
syndrome (n=57), top tertile of Lp(a), OxPL-apoB and OxPL-apo(a) 
(n=73 for all three groups), and the combined groups of ‘top tertile of 
ApoCIII-Lp(a)-top tertile of Lp(a)’, ‘top tertile of ApoCIII-Lp(a)-top tertile 
of OxPL-apoB’ and ‘top tertile of ApoCIII-Lp(a)-top tertile of OxPL-
apo(a)’ (n=22 for all three groups). For the (A), the box shows 25th and 
75th percentiles, the median line shows the median value and the black 
dot the mean value, error bars the 10th and 90th percentiles; circles are 
outliers. P values highlight the significance when comparing patients 
with the specific risk factor versus those without (ie, age <57 years, BMI 
<30, no hypertension, lower LDL-C, no MetS, middle and bottom tertiles 
of Lp(a), OxPL-apoB and OxPL-apo(a), and the other three groups of 
patients without both elevated ApoCIII-Lp(a) and Lp(a), OxPL-apoB 
or OxPL-apo(a)). Apo(a), apolipoprotein (a); ApoB, apolipoprotein B; 
ApoCIII, apolipoprotein CIII; ASTRONOMER, AS Progression Observation: 
Measuring Effects of Rosuvastatin; AVR, aortic valve replacement; BMI, 
body mass index; LDL-C, low-density lipoprotein-cholesterol; Lp(a), 
lipoprotein(a); MetS, metabolic syndrome; OxPL, oxidised phospholipids.

apo(a).10 ATX activity was also present in the isolated Lp(a) 
fraction of patients without AS.12 Furthermore, valve interstitial 
cells expressed ATX and lysophosphatidic acid promoted the 
mineralisation of the aortic valve cells through a nuclear factor 
κ B/interleukin 6/bone morphogenetic protein pathway.12 In a 
second study, circulating total ATX mass, and particularly ATX 
activity in conjunction with Lp(a) and OxPL-apoB were very 
strong predictors of the presence of AS, with HRs>5.26 There 
are methodological differences between those studies and the 
current study. The current assays only measure ATX mass, but 
not activity, and on apoB and Lp(a) rather than whole plasma, 
which may explain the difference. Furthermore, the role of 
ATX may be more prominent within valve leaflets once OxPL 
are either generated or transported in by carriers such as Lp(a). 
Further work is needed to understand the role of lipoprotein-
associated ATX versus total plasma levels and then to elucidate 
the potential benefice of targeting ATX over other lipid-related 
molecules that modulate AS progression.

Limitations
Limitations of this study include that, due to the lack of remaining 
plasma, ApoC-III content on apoB or apoAI containing lipopro-
teins could not be measured to assess their predictive value.19 
Even if there was no interaction between apoC-III and Lp(a) 
with age, the association of these biomarkers with faster AS 
progression should be assessed in an older AS population. 
Finally, our findings consistently support the association of high 
Lp(a) and apoC-III plasma levels, that was observed in a group of 
22 patients, with faster progression of AS and occurrence of clin-
ical outcomes. These data need to be confirmed in a larger group copyright.
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of patients with AS, and particularly in larger number of patients 
with concomitant high Lp(a) and ApoC-III plasma levels.

Clinical implications
There may be potential therapeutic implications from this study, 
particularly following the failure of four statin trials in patients 
with AS.5 These data, and the confluence of data on Lp(a)/OxPL 
as risk factors for aortic stenosis,10 provide a proof of concept to 
design randomised clinical trials to assess the efficacy of therapies 
targeting Lp(a)/OxPL/apoC-III to slow AS progression. Lp(a)27 28 
and apoC-III29 can be targeted with antisense oligonucleotides and 
OxPL with monoclonal antibodies such as E06.30 In the meantime, 
our findings support, at least in part, the use of Lp(a) and ApoC-III 
as biomarkers to stratify patients with increased risk of faster AS 
progression and occurrence of AS-related clinical events.

Conclusion
ApoC-III is present in Lp(a), measured both in the proteome and 
by ELISA techniques. A strong interaction was noted between 
highest levels of ApoCIII-Lp(a) and Lp(a) or OxPL-apoB and 
OxPL-apo(a) in predicting rapid progression of AS, and addi-
tionally identifying fast progressors and patients at highest risk 
of AVR and cardiac death. These variables can be used in clinical 
research studies of AS and may be useful as clinical biomarkers to 
identify patients with the fastest rate of AS progression.
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